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Simplex space–time meshes in finite element simulations
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SUMMARY

A straightforward method for generating simplex space–time meshes is presented, allowing arbitrary
temporal refinement in selected portions of space–time slabs. The method increases the flexibility of
space–time discretizations, even in the absence of dedicated space–time mesh generation tools. The
resulting tetrahedral (for 2D problems) and pentatope (for 3D problems) meshes are tested in the context
of advection–diffusion equation, and are shown to provide reasonable solutions, while enabling varying
time refinement in portions of the domain. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element (FE) method has been typically applied to time-dependent problems in conjunction
with a finite difference (FD) temporal discretization, such as �-family or Runge–Kutta family of
methods. Regardless of the sequence of discretization steps, i.e. whether the FE method in space is
followed by an FD in time (method of lines or semi-discretization) or this order is reversed (method
of Rothe), one utilizes FE interpolation, with its flexibility to admit completely unstructured meshes
with varying levels of refinement, purely on a spatial domain.

1.1. Space–time discretization

The space–time approach applies the FE method to the space–time domain in a single discretiza-
tion step. The idea can be traced to the works by Jamet and Bonnerot [1, 2], Lynch and Gray [3],
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and Frederiksen and Watts [4]; Jamet [5] recognized discontinuous-in-time interpolation as an
advantageous approach for a model parabolic problem. This concept was then developed further
for multi-dimensional advective–diffusive systems [6, 7], elastodynamics [8], Navier–Stokes equa-
tions [9, 10], and Navier–Stokes problems involving deforming domains [11–13]. Since those early
gestation phases, the space–time approach has been steadily gaining new understanding and new
applications. Yet, it can be argued that the full potential of the space–time FEs has been only
partially exploited. The extraordinary flexibility of FEs when dealing with varying resolution in
complicated domains is not yet commonly harnessed when the time dimension is considered.
Although novel space–time meshing concepts appear occasionally (and are listed below), the
difficulties ingrained in perceiving and computationally analyzing higher-dimensional geometric
entities limit somewhat these concepts’ appeal in realistic 3D applications.

In order to avoid unmanageable number of degrees of freedom that must be solved for at any given
time, the space–time approach is typically applied to subsets of the temporal domain called space–
time slabs, which are roughly comparable with time steps in the semi-discrete approach.‡ Moreover,
in most space–time implementations to date, the meshes for the space–time slabs are simply
extruded in the temporal direction from a spatial mesh, resulting in reference element domains
that are always Cartesian products of spatial and temporal domains. Such an approach is best
described as semi-unstructured (unstructured in space, structured in time) and does not leave the
option of increasing temporal refinement in portions of the domain. In such a case, the space–time
slab exactly corresponds to a time step of a semi-discrete procedure. In fact, many stencils of
semi-discrete methods may be re-derived by using the semi-unstructured space–time approach with
appropriate weighting and interpolation functions.

1.2. Unstructured space–time meshes for 1D and 2D problems

Hughes and Hulbert [8] introduced the idea of adaptively refined space–time mesh for a 1D
elastic rod problem and discussed the potential of the unstructured space–time meshes as a more
flexible and rigorous alternative to subcycling. Maubach in his thesis [15] applied and analyzed
unstructured space–time meshes for 2D advection–diffusion equations. Idesman et al. [16] obtained
deformation history of 2D viscoelastic plate by using an adaptively refined space–time mesh.
A similar approach, dubbed ‘single mesh’, was used by Sathe [17] to solve 2D advection–diffusion
problems.

1.3. Hierarchical space–time meshes for 3D problems

Sathe [17] notes the 4D mesh generation difficulties inherent in extending the ‘single mesh’
approach to 3D problems and proposes a ‘multiple mesh’ alternative, where structured nested
grids, presumably as simple to generate in 4D as in 3D, are superimposed over the standard
semi-unstructured mesh. That approach is then used to solve a 2D fluid–structure interaction
problem.

In the following sections, we first describe a robust and simple procedure to generate 3D or
4D simplex-based space–time meshes in Section 2. Other aspects of implementation of fully
unstructured space–time discretization are discussed in Section 3. As a numerical example, we

‡Note that the recent advent of highly scalable parallel computing architectures, and the associated need for parallelism,
motivates increasing the coupling between available degrees of freedom, by means of simulating larger portions of
the temporal domain in a single step [14].
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examine 1D advection of a Gaussian hill, solved in 2D and 3D with varying levels of temporal
refinement in Section 4. This is followed by comments on performance in Section 5 and by
concluding remarks and directions of future studies in Section 6.

2. SPACE–TIME MESH GENERATION

The key to space–time computations that allow varying degrees of temporal, as well as spatial,
refinement is a straightforward and robust algorithm for the generation of simplex-based space–
time meshes. The necessary steps are outlined in the subsections that follow. For simplicity, we
restrict ourselves to just linear continuous interpolation functions for all variables, although this
aspect is not crucial to the proposed approach.

2.1. Spatial mesh

As a starting point, we consider a spatial mesh in nsd dimensions, generated using any of the
freely or commercially available mesh generators. We restrict ourselves to nsd-simplex-based
meshes, such as triangular meshes in 2D and tetrahedral meshes in 3D. The Delaunay approach
used here to generate space–time connectivity always produces simplex-type elements; therefore,
a generalization of the proposed algorithm to quadrilateral or hexahedral spatial meshes is not
attempted.

2.2. Prism formation

Similar to that in traditional space–time implementation, the spatial mesh is at first extruded in the
time dimension to fill the space–time slab contained between time levels tn and tn+1. The extruded
mesh is composed of prisms—6-noded space–time elements for 2D problems and 8-noded space–
time elements for 3D problems. These elements, referred to as 3d6n and 4d8n, respectively, and
illustrated in Figure 1(a), are the basis of the traditional space–time approach considered here as a
reference. Note that the ‘faces’ extending in the temporal dimension are non-simplical, having 4
nodes for the 3d6n element and 6 nodes for the 4d8n element. We will aim at subdividing these
prism-type elements into simplex-type elements 3d4n (familiar tetrahedrons) and 4d5n (referred
to as pentatopes), as shown in Figure 1(b).

2.3. Temporal refinement

The initial space–time mesh contains only two nodes for each of the nodes in the spatial mesh—
e.g. in1 located at the bottom of the slab and in2 located at the top of the slab, as shown in
Figure 2(a). The temporal refinement is accomplished by adding, in parts of the domain where
temporal accuracy is to be increased, one or more nodes along the line connecting the original
nodes, as shown in Figure 2(b).

2.4. Coordinate perturbation

The space–time faces of the prism-type elements will be subsequently divided into (nsd−1)-node
simplices according to the Delaunay criteria, independently for each prism. As (in the case of
stationary spatial mesh) these faces are regular (rectangles for 2D and right prisms for 3D), the
Delaunay mesh will not be unique. Therefore, there is no guarantee that the direction of the
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Figure 1. Comparison of prism- and simplex-type space–time elements. Black nodes
correspond to tn and white nodes correspond to tn+1: (a) prism-type space–time elements

and (b) simplex-type space–time elements.

Figure 2. Temporal refinement of a 3d6n space–time prism: (a) original and (b) refined.

diagonal line (2D) or diagonal triangle (3D) will be compatible across the neighboring space–time
prisms (see Figure 3(a)). A simple solution is to randomly perturb the time coordinates of some
or all nodes, as illustrated in Figure 3(b). This perturbation, the same for each prism sharing a
particular node, ensures the uniqueness of Delaunay process and guarantees the compatibility of
the (nsd−1)-simplices between the neighboring space–time prisms. After the connectivity of the
unstructured space–time mesh is established, the time coordinates can be restored to their original
values. In practice, the perturbation needs to be applied only to the space–time nodes corresponding
to times greater than tn .
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Figure 3. Perturbation of temporal coordinates of a 3d6n space–time prism: (a) before and (b) after.

Figure 4. Sliver element elimination in a 3d6n space–time prism:
(a) rejected sliver and (b) final connectivity.

2.5. Delaunay triangulation

The Delaunay method of generating simplex tesselations, although commonly used in 2D and
3D, is in principle applicable to any number of dimensions. The procedure relies only on point-
sphere distance computations, which are easily expressed in four or higher number of dimensions.
Freely available implementations of the n-dimensional Delaunay algorithm are available, e.g. in
the qhull [18] package. The Delaunay approach alone finds limited application in engineering
mesh generation, because it is limited to tesselating convex regions only and because it routinely
generates sliver (nearly zero-volume) elements. The second issue will be addressed shortly; the
first limitation is not a problem in our application, because each space–time prism is convex. The
non-convexity of the spatial domain has been entirely accounted for by the spatial mesh alone.

2.6. Sliver elimination

As previously mentioned, the Delaunay approach, when applied to node sets where more than
nsd nodes may lie on a single plane (as is the case with non-simplical space–time prism faces),
usually produces sliver, or nearly zero-volume, simplices, as shown in Figure 4. Although the inner
diagonal (marked d1) is unique due to the perturbation of time coordinates, an additional element
defined by both diagonals d1 and d2 may also be produced. An additional test is needed here
to detect and remove generated elements that have nearly zero volume. Note that, e.g. perturbation
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of node spatial coordinates would remove this ambiguity in the Dealunay procedure, but it would
also guarantee near-sliver creation in one of the two prisms sharing each face. Therefore, a
posteriori sliver elimination is always necessary and easily accomplished by computing 3D or 4D
element volumes and by rejecting elements whose volume falls below a specified threshold.

2.7. Connectivity generation

Having constructed connectivity information inside each space–time prism that (a) incorporates
additional nodes placed between the slab-delimiting time levels and (b) is compatible between
neighboring prisms, it is trivial to convert it into a global connectivity information that connects
all the space–time slab nodes in a network of (nsd+1)-simplex elements. Although this network
is difficult to visualize in 4D, the computer program that generates it is largely identical to the
program that generates 3D space–time mesh from a 2D spatial mesh, which can be validated using
available visualization and verification tools.

3. IMPLEMENTATION ASPECTS

Although it is safe to say that pentatope FEs are not widely used, they are remarkably similar to
their lower-dimensional counterparts such as triangles and tetrahedrons. Table I summarizes the
differences between a tetrahedron and a pentatope from the point of view of FE implementation.
One non-standard issue is the 4D quadrature scheme by Cools and Rabinowitz [19] and Stroud [20].

The use of pentatope elements in place of extruded space–time prisms brings about a significant
increase in the number of FEs in each slab. Even if no localized temporal refinement is used
(defeating somewhat the purpose of using simplex space–time elements), the ratio of 4D prisms
to pentatopes can be of the order of 5–6, which renders any computational scheme based on

Table I. Geometric and implementation details concerning 3D and 4D prismatic and simplex finite elements.

Element type Tetrahedron 3d4n Pentatope 4d5n

Physical coordinates x, y, t x, y, z, t
Reference coordinates �,�,� �,�,�,�
Number of element nodes 4 5
Number of element faces 4 5
N1 � �
N2 � �
N3 � �
N4 1−�−�−� �
N5 1−�−�−�−�
Reference volume 1

6
1
24

Number of quadrature points 4 5
Quadrature weights [19] wi = 1

4 , i =1, . . . ,4 wi = 1
5 , i =1, . . . ,5

Quadrature positions [19] �1=0.585410200000000 �1=0.526598632371090503
�1=0.138196600000000 �1=0.118350341907227374
�1=0.138196600000000 �1=0.118350341907227374

�1=0.118350341907227374

Notes: In each case, linear shape functions Ni and third-order quadrature rules are shown. Only first quadrature
point position is given and remaining points are obtained by permuting the coordinates.
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element-based storage impractical. However, many FE codes use node-based storage schemes,
with the system matrix stored either in compressed sparse row (general case) or in block sparse
row (multi-degree-of-freedom case with equal-order interpolation); there is no increase in storage
costs in such a scheme due to simply increasing the number of elements. The cost of assembly of
the system matrix and residual is expected to increase of course, but in our experience this cost is
relatively small compared with the cost of the subsequent solution to that linear system.

4. PROPAGATION OF A GAUSSIAN HILL

The numerical example involves the 1D propagation of a Gaussian hill by means of a convection–
diffusion equation. The example is based on the benchmark problem from [21, Section 5.6.1].
The initial profile is described as follows:

u(x,0)= 5

7
exp

{
−

(
x−x0

�

)2
}

(1)

with boundary condition u(0, t)=0 and u(1, t)=0 for t�0, where x0= 2
15 and �=7

√
2/300.

The convection–diffusion equation of the following form:

�u
�t

+a
�u
�x

−�
�2u
�x2

=0 (2)

is used,with a=1 and �=1/30000.As this example serves as the initial validation of the unstructured
space–time mesh solver for problems in two- and three-space dimensions, the 1D problem is solved
in a 2D domain discretized with a regular triangular mesh, as shown in Figure 5. The division of the
unit interval along the x direction into 150 uniform elements results in a Péclet number of 100.

The hill was first propagated for t=0.6 using the Crank–Nicolson time stepping as well as the
usual discontinuous-in-time Galerkin time stepping (prismatic space–time elements, linear-in-time
interpolation). The latter formulation can be summarized as follows: Find uh(x, t)∈S, such that
for all vh(x, t)∈V∫

Q
vh

�uh

�t
dx dt+

∫
Q

vha
�uh

�x
dx dt+

∫
Q

�vh

�x
�
�uh

�x
dx dt+

∫
�
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+∑
e

∫
Qe

[
�vh

�t
+a

�vh

�x
−�

�2vh

�x2

]
�

[
�uh

�t
+a

�uh

�x
−�

�2uh

�x2

]
dx dt=0 (3)

Figure 5. Gaussian hill: domain definition and the spatial discretization in 2D (left) and 3D (right).
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where the space–time slab for a given time interval I is denoted as Q=�× I , decomposed
into element subdomains Qe. Moreover, the spatial domain is �=[0,1] and S=V={u|u∈
H1(Q),u(0, t)=0,u(1, t)=0} are the standard interpolation and weighting function spaces. The
notations (uh)+ and (uh)− in the weak-continuity term denote the upper and lower values, respec-
tively, of the discontinuous variable at the lower surface � of the space–time slab Q. The stabiliza-
tion term takes a doubly asymptotic form of [22]. When using piecewise-linear interpolations, as
is the case in this paper, the second derivatives in (3) are identically zero. The discretization using
Crank–Nicolson time stepping is essentially identical to (3), with �uh/�t terms approximated by
a difference stencil, �vh/�t and weak-continuity term dropped, and all integrations taking place
over the spatial domain � only.

The time step size was at first chosen as �t=0.02/3 corresponding to a Courant number
C=1 and then increased threefold resulting in C=3. Figures 6 and 7 show the results, with
high dispersion errors apparent in the Crank–Nicolson solution. These standard results were then
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Figure 6. Gaussian hill in 2D: Galerkin/least-squares solution at t=0.6 obtained using
Crank–Nicolson (left) and discontinuous Galerkin (right) time stepping with C=1. The initial

condition and the exact solution are also shown.
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Figure 7. Gaussian hill in 2D: Galerkin/least-squares solution at t=0.6 obtained using
Crank–Nicolson (left) and discontinuous Galerkin (right) time stepping with C=3. The initial

condition and the exact solution are also shown.
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compared with the propagation results obtained with the tetrahedral space–time mesh discretization
of a slab �t=0.02 thick, with three and one elements in time, resulting again in C=1 and 3,
respectively. The results are shown in Figure 8.

The experiment was then repeated in 3D again for t=0.6 using the Crank–Nicolson time stepping
as well as the usual discontinuous-in-time Galerkin time stepping (prismatic space–time elements,
linear-in-time interpolation). The time step size was again chosen as �t=0.02/3 corresponding to
a Courant number C=1, and then increased threefold resulting in C=3. Figures 9 and 10 show the
results, with high dispersion errors apparent in the Crank–Nicolson solution. These standard results
were then compared with the propagation results obtained with the pentatope-based space–time
mesh discretization of a slab �t=0.02 thick, with three and one elements in time, resulting again
in C=1 and 3, respectively. The results are shown in Figure 11.

Finally, a hybrid mesh was generated using the technique presented in Section 2, with each of
the 30 time slabs being 0.02 thick and discretized differently with one to three elements in the
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Figure 8. Gaussian hill in 2D: Galerkin/least-squares solution at t=0.6 obtained using tetra-
hedral space–time discretization with C=1 (left) and C=3 (right). The initial condition and

the exact solution are also shown.
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Figure 9. Gaussian hill in 3D: Galerkin/least-squares solution at t=0.6 obtained using
Crank–Nicolson (left) and discontinuous Galerkin (right) time stepping with C=1. The initial

condition and the exact solution are also shown.
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Figure 10. Gaussian hill in 3D: Galerkin/least-squares solution at t=0.6 obtained using
Crank–Nicolson (left) and discontinuous Galerkin (right) time stepping with C=3. The initial

condition and the exact solution are also shown.
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Figure 11. Gaussian hill in 3D: Galerkin/least-squares solution at t=0.6 obtained using
pentatope-based space–time discretization with C=1 (left) and C=3 (right). The initial condi-

tion and the exact solution are also shown.
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Figure 12. Gaussian hill in 3D: Galerkin/least-squares solution at t=0.6 obtained using pentatope-based
space–time discretization with C=1–3. The space–time mesh corresponding to the spatial domain edge
(x,0,0) is shown on the left. The contour plot of the advected quantity for that edge is shown on the

right. See Figure 13 for an elevation plot.
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Figure 13. Gaussian hill in 3D: Galerkin/least-squares solution at t=0.6 obtained using pentatope-based
space–time discretization with C=1–3. The elevation plot of the advected quantity corresponding to the

spatial domain edge (x,0,0) is shown. The initial condition and the exact solution are also shown.

time direction, resulting also in C=1–3. The resulting mesh is a fully unstructured pentatope-
based space–time mesh, with the 4D grid projected onto 2D plot by selecting all triangular faces
corresponding to the spatial edge (x,0,0) as shown in Figure 12. The contour plot of the advected
quantity (−0.05�u�0.75) for that edge is also shown in that figure. In Figure 13, the elevation
plot along that edge is shown, with the dissipative behavior comparable to that obtained with
C=1, as already shown in Figure 11 (left), but with significantly fewer pentatope elements (4200
versus 9000). The result is slightly worse than that obtained with prismatic space–time elements
with C=1 shown in Figure 9 (right), but certainly better than the result for prismatic space–time
elements with C=3 shown in Figure 10 (right).

5. EFFICIENCY ASPECTS

The example in Section 4 can be considered too small to provide reliable timing measurements;
nevertheless, the typical performance behavior is summarized in Table II. Table II lists the number
of time steps, equation system size, as well as the time required to form and to solve the equation
systems (summed over all time steps required to solve the benchmark problem) for (a) prism-based
space–time elements with small time step (C=1), as used in Figure 9 (right), (b) prism-based
space–time elements with large time step (C=3), as used in Figure 10 (right), and (c) pentatope-
based space–time elements with variable time step (C=1–3), as used in Figure 13.

It is expected that, assuming fixed linear solver parameters, the time required to obtain a solution
with C=1 is thrice that required to obtain a solution with C=3. Two further aspects are apparent
from the above table. The number of equations (nodes) in the pentatope mesh with variable temporal
refinement is only 20% higher than the number of equations for a prismatic mesh with the same
maximum time step size. Therefore, the solution time is also 20% higher, when using iterative
solvers with linear scaling properties. This time is still significantly lower than 200%-higher-time
resulting from high uniform temporal refinement. The conditioning of the linear systems arising
from both types of elements was not examined in detail; the convergence of the iterative GMRES
solver used was observed to be similar for all cases considered.
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Table II. Typical performance behavior of the prism- and pentatope-based calculations.

Time Equations System System
steps per step formation (s) solution (s) Comments

Prisms, C=1 30 1192 5.38 20.93 Low dissipation, slow
Prisms, C=3 10 1192 1.89 7.00 High dissipation, fast
Pentatopes, C=1–3 10 1432 3.99 8.57 Low dissipation,

slow formation
fast solution

On the other hand, as the number of elements in a pentatope-based mesh is significantly higher
than that in the prism-based meshes (4200 versus 750), even though the elements are simpler,
the system formation time is also significantly higher—in fact, it is more than twice. It remains
lower, however, than the time required to repeatedly form the system with a uniformly refined
prism-based mesh, which would be necessary in a non-linear case. This aspect is not seen as
critical to the efficiency of the new approach; in our experience, the system formation time is
not significant compared with the solution time for realistic problems solved using implicit time
stepping.

It can also be concluded that using pentatopes without exploiting their potential for variable
temporal refinement is not an attractive option; the accuracy properties are not improved, the
equation system size is the same compared with prism-based mesh with the same time step size, and
the number of elements is massively increased leading solely to increased system formation times.

6. CONCLUDING REMARKS

A straightforward method for generating simplex space–time meshes has been introduced, allowing
arbitrary temporal refinement in selected portions of space–time slabs. The goal is to increase the
flexibility of space–time discretizations, bypassing partially the limitations of mesh generation tools
which are universally limited to three spatial dimensions. Implementation aspects arising from the
use of unusual pentatope elements have been described; they are shown to be relatively minor. The
resulting tetrahedral (for 2D problems) and pentatope (for 3D problems) meshes were tested in the
context of advection–diffusion equation and were shown to provide reasonable solutions, while
enabling varying time refinement in portions of the domain. Although for the presented example it
may be possible to generate the required connectivities manually, taking advantage of the simple
geometry, that was purposefully not done; any geometry-specific mesh generation algorithm will
not be in general applicable to realistic problems of engineering interest, and our effort concerns
automatic connectivity generation. In this approach, the only user input is the spatial mesh and
the number of temporal nodes required for each spatial node. The extension of the method to
problems of more engineering significance, such as incompressible Navier–Stokes equations, is
straightforward, although the numerical behavior of stabilized FE formulations on such highly
unstructured space–time meshes still needs to be examined. Similarly, cost benefits and best-case
and worst-case scenarios are yet to be analyzed for more complex geometries. It remains to be
seen whether the mesh generation scheme could be possibly extended to connect disparate spatial
meshes at the bottom and top levels of the space–time slab.
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Computing and Communication Center and by the Jülich Supercomputer Center. The author also wishes
to acknowledge the support of the German Science Foundation under programs GSC 111, EXC 128,
SFB 540 and 401, and SPP 1253 and 1273. The author would like to thank the Chair for Computational
Mechanics (LNM) at the Technical University of Munich for the creative atmosphere that led to the first
version of this article, and then to a finished version during a subsequent visit.

REFERENCES

1. Jamet P, Bonnerot R. Numerical solution of the Eulerian equations of compressible flow by a finite element
method which follows the free boundary and the interfaces. Journal of Computational Physics 1975; 18:
21–45.

2. Bonnerot R, Jamet P. Numerical computation of the free boundary for the two-dimensional Stefan problem by
space–time finite elements. Journal of Computational Physics 1977; 25:163–181.

3. Lynch DR, Gray WG. Finite element simulation of flow in deforming regions. Journal of Computational Physics
1980; 36:135–153.

4. Frederiksen CS, Watts AM. Finite-element method for time-dependent incompressible free surface flows. Journal
of Computational Physics 1981; 39:282–304.

5. Jamet P. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable
domain. SIAM Journal on Numerical Analysis 1978; 15:912–928.

6. Hughes TJR, Franca LP, Mallet M. A new finite element formulation for computational fluid dynamics. VI.
convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective–
diffusive systems. Computer Methods in Applied Mechanics and Engineering 1987; 63:97–112.

7. Hughes TJR, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics. VIII.
the Galerkin/least-squares method for advective–diffusive equations. Computer Methods in Applied Mechanics
and Engineering 1989; 73:173–189.

8. Hughes TJR, Hulbert GM. Space–time finite element methods for elastodynamics: formulations and error estimates.
Computer Methods in Applied Mechanics and Engineering 1988; 66:339–363.

9. Shakib F. Finite element analysis of the compressible Euler and Navier–Stokes equations. Ph.D. Thesis, Stanford
University, Department of Mechanical Engineering, 1988.

10. Hansbo P, Szepessy A. A velocity–pressure streamline diffusion finite element method for the incompressible
Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering 1990; 84:175–192.

11. Tezduyar TE, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries
and interfaces—the deforming-spatial-domain/space–time procedure. I. The concept and the preliminary tests.
Computer Methods in Applied Mechanics and Engineering 1992; 94:339–351.

12. Tezduyar TE, Behr M, Mittal S, Liou J. A new strategy for finite element computations involving moving
boundaries and interfaces—the deforming-spatial-domain/space–time procedure. II. Computation of free-surface
flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and
Engineering 1992; 94:353–371.

13. Hansbo P. The characteristic streamline diffusion method for the time-dependent incompressible Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering 1992; 99:171–186.

14. Farhat C, Chandesris M. Time-decomposed parallel time-integrators: theory and feasibility studies for fluid,
structure, and fluid–structure applications. International Journal for Numerical Methods in Engineering 2003;
58:1397–1434.

15. Maubach JML. Iterative methods for non-linear partial differential equations. Ph.D. Thesis, University of Nijmegen,
1991.

16. Idesman A, Niekamp R, Stein E. Finite elements in space and time for generalized viscoelastic Maxwell model.
Computational Mechanics 2001; 27:49–60.

17. Sathe SV. Enhanced-discretization and solution techniques in flow simulations and parachute fluid–structure
interactions. Ph.D. Thesis, Rice University, Department of Mechanical Engineering and Materials Science, 2004.

18. Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software 1996; 22:469–483.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1421–1434
DOI: 10.1002/fld



1434 M. BEHR

19. Cools R, Rabinowitz P. Monomial cubature rules since ‘Stroud’: a compilation. Journal of Computational and
Applied Mathematics 1993; 48:309–326.

20. Stroud AH. Approximate Calculation of Multiple Integrals. Prentice-Hall: Englewood Cliffs, NJ, 1971.
21. Donea J, Huerta A. Finite Element Methods for Flow Problems. Wiley: New York, 2003.
22. Brooks AN, Hughes TJR. Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with

particular emphasis on the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics
and Engineering 1982; 32:199–259.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1421–1434
DOI: 10.1002/fld


